publications

2023

  1. Automated Detection of Causal Inference Opportunities: Regression Discontinuity Subgroup Discovery
    Tony Liu, Patrick Lawlor, Lyle Ungar, Konrad Kording, and Rahul Ladhania
    Transactions of Machine Learning Research (TMLR), 2023
  2. Analyzing text message linguistic features: Do people with depression communicate differently with their close and non-close contacts?
    Jonah Meyerhoff, Tingting Liu, Caitlin Stamatis, Tony Liu, Harry Wang, Yixuan Meng, Brenda Curtis, Chris J Karr, and 3 more authors
    Behavior Research and Therapy, 2023
  3. Leveraging Natural Language Processing and Artificial Intelligence to Label Unstructured Data for Risk Prediction
    C Amro, A Desai, P Dattatri, Tony Liu, JY Hsu, RB Broach, LH Ungar, and JP Fischer
    British Journal of Surgery, 2023

2022

  1. Automated Machine Learning for Risk Prediction of Incisional Hernia in Abdominal Surgery Patients
    Ankoor A Talwar, Abhishek A Desai, Phoebe B McAuliffe, Tony Liu, Vivek James, Ivona Percec, Robyn B Broach, Lyle Ungar, and 1 more author
    Plastic and Reconstructive Surgery–Global Open, 2022
  2. Data-driven exclusion criteria for instrumental variable studies
    Tony Liu, Patrick Lawlor, Lyle Ungar, and Konrad Kording
    Conference on causal learning and reasoning (CLeaR), 2022
  3. The relationship between text message sentiment and self-reported depression
    Tony Liu, Jonah Meyerhoff, Johannes C Eichstaedt, Chris J Karr, Susan M Kaiser, Konrad P Kording, David C Mohr, and Lyle H Ungar
    Journal of affective disorders, 2022
  4. Prospective associations of text-message-based sentiment with symptoms of depression, generalized anxiety, and social anxiety
    Caitlin A Stamatis, Jonah Meyerhoff, Tingting Liu, Garrick Sherman, Harry Wang, Tony Liu, Brenda Curtis, Lyle H Ungar, and 1 more author
    Depression and anxiety, 2022
  5. Neuromatch Academy: a 3-week, online summer school in computational neuroscience
    Bernard Hart, Titipat Achakulvisut, Ayoade Adeyemi, Athena Akrami, Bradly Alicea, Alicia Alonso-Andres, Diego Alzate-Correa, Arash Ash, and 4 more authors
    Journal of Open Source Education, 2022

2021

  1. Quantifying causality in data science with quasi-experiments
    Tony Liu, Lyle Ungar, and Konrad Kording
    Nature computational science, 2021
  2. Towards Cotenable and Causal Shapley Feature Explanations
    Tony Liu, and Lyle Ungar
    AAAI 2021 Workshop: Trustworthy AI for Healthcare, 2021
  3. Evaluation of changes in depression, anxiety, and social anxiety using smartphone sensor features: longitudinal cohort study
    Jonah Meyerhoff, Tony Liu, Konrad P Kording, Lyle H Ungar, Susan M Kaiser, Chris J Karr, and David C Mohr
    Journal of medical Internet research, 2021
  4. Machine learning and surgical outcomes prediction: a systematic review
    Omar Elfanagely, Yoshiko Toyoda, Sammy Othman, Joseph A Mellia, Marten Basta, Tony Liu, Konrad Kording, Lyle Ungar, and 1 more author
    Journal of Surgical Research, 2021

2020

  1. A web-based automated machine learning platform to analyze liquid biopsy data
    Hanfei Shen, Tony Liu, Jesse Cui, Piyush Borole, Ari Benjamin, Konrad Kording, and David Issadore
    Lab on a Chip, 2020

2019

  1. Machine learning for phone-based relationship estimation: the need to consider population heterogeneity
    Tony Liu, Jennifer Nicholas, Max M Theilig, Sharath C Guntuku, Konrad Kording, David C Mohr, and Lyle Ungar
    Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2019