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Although much of data science has centred around using tools 
from statistics and machine learning (ML) to make predic-
tions and ‘extract insight’ from data1, many questions are 

ultimately causal in nature as the predictions made and insights 
gained are used to inform decision-making. For example, data sci-
entists may build a ML model to make predictions of which patients 
are likely to be re-admitted to a hospital within 30 days, but stake-
holders ultimately want to know what interventions or policy deci-
sions can be made to reduce the risk of a patient being re-admitted. 
Data scientists need to add causal methods to their toolkit to answer 
the causal questions embedded in many of the problems they aim 
to solve.

As correlation is not sufficient for causation, there is danger in 
misinterpreting the correlational results common in data science 
analysis as causal. Any typical supervised ML method (for example, 
predictions from a set of features) is inadequate for inferring causa-
tion, as training ML models for prediction is an inherently correla-
tional task: the ML model only ‘observes’ the relationship between 
the features and outcome in the data when making predictions, 
instead of ‘changing’ the features to determine their impact on the 
outcome2,3. An example of these shortcomings was a model devel-
oped to predict mortality in patients with pneumonia that paradoxi-
cally concluded that having asthma reduced pneumonia mortality 
risk4. The model did nothing wrong: patients in the training data 
with asthma were more likely to be admitted to the hospital and 
were administered more aggressive care, ultimately resulting in 
lower mortality. However, this model is potentially harmful from 
a decision-making perspective as following the model may deny 
patients with asthma the extra care they actually need. With stan-
dard ML there is always a risk that unobserved features may be driv-
ing the model predictions.

Numerous techniques have been developed to estimate cau-
sality more appropriately from observational data (where there 
are no randomized perturbations). Here we review standard 
quasi-experimental methods, which have been largely used in 
economics but underutilized outside of this domain. We dis-
cuss their assumptions, why we believe that they should be more 
widely adopted and motivate our explanations with real-world 
examples along with potential applications in common data sci-
ence domains. We close by advocating for the cross-pollination of 
quasi-experimental methods and data science: quasi-experiments 

can make causal inference possible in typical data science settings, 
while innovations in ML can in turn improve these methods for 
wider application in complex data domains.

Confounders and colliders in observational studies
Observational data can be problematic for causal inference because 
of the core problem of unobserved confounding. We wish to deter-
mine the effect of a treatment X (hospitalization) on outcome Y 
(pneumonia risk), but there is a hidden confounder Z (asthma) 
that simultaneously influences both X and Y. If we can conduct an 
experiment, that is, set X ourselves, then we can remove confound-
ing, allowing identification of the causal effect of X on Y (Fig. 1a). 
Experiments are used across medicine (clinical trials), public health 
(Oregon Medicaid lottery experiment5), software development and 
advertising (A/B testing), and ML (bandits and reinforcement learn-
ing6–8). However, experiments can be expensive, unethical or other-
wise impractical. Furthermore, most data in data science settings 
are observational, yet we still would like to estimate causal effects. 
To infer causality from observational data, untestable assumptions 
about the data-generating process are usually needed.

Many techniques that estimate causality from observational data 
rely on unconfoundedness, which is the assumption that all con-
founders (variables that influence both the treatment X and out-
come Y) are observed and accounted for in the data9. In this case, 
the confounders can be ‘controlled for’ to obtain valid causal esti-
mates, for example, by adding them to a regression. However, we 
cannot generally know whether we capture all confounders10, and 
so strong beliefs about the system are needed (Fig. 1b). Practitioners 
must argue that their data do in fact contain all relevant confound-
ers (and none of the colliders, see below), and critiques of analy-
ses relying on unconfoundedness often centre on variables missing 
from analysis. Because there is no way of testing whether the miss-
ing variables are confounders, belief of the causal estimates hinges 
on belief that the unconfoundedness assumption is credible.

For example, suppose that in our pneumonia risk problem, 
we measure patients’ asthma and control for it in our analysis. A 
reviewer of the study could raise that there are numerous other 
potential confounders that were not accounted for, such as race, 
socioeconomic status, smoking status, other medical history and so 
on. And even if more of these potential confounders were measured 
as part of the study and controlled for, there is always the possibility  
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of another missing confounder that could threaten the validity of 
the results. Any study making causal claims using observational 
data needs to either use methods that do not rely on unconfound-
edness or provide a convincing argument that unconfoundedness is 
at least approximately true.

In addition to unconfoundedness, data scientists must also be 
able to identify variables that should not be controlled for, which are 
called colliders. Unlike confounders, which affect both X and Y, col-
liders are variables that are affected by X and Y (Fig. 1b). Controlling 
for colliders makes our causal estimates worse11,12. For example, we 
can imagine a possibility in our pneumonia question where asthma 
itself is a collider of hospitalization (X) and pneumonia (Y): pneu-
monia may make it more likely for a hospitalized patient to expe-
rience asthmatic symptoms, perhaps due to allergies encountered 
during hospitalization. In addition to measuring relevant variables 
to control for confounding, data scientists seeking causal estimates 
need to ensure that the variables are not colliders.

One framework of causality that is prominent in computer sci-
ence is the structural causal model (SCM) popularized by Judea 
Pearl11. SCMs combine directed acyclic graphs (DAGs) to express 
causal relationships with a mathematical framework for comput-
ing causal quantities from the DAGs called do-calculus. The beauty 
of SCMs is that the causal structure of a problem is represented 
graphically, making both assumptions and identifiability of causal 
effects easy to understand13. Expert knowledge is needed to obtain 
these graphs and to argue that there are no confounders missing in 
the assumed form3. Though we can test the correctness of connec-
tions between variables in the graph to some degree by checking 
whether the implied conditional independencies between variables 
is reflected in the data2, unconfoundedness is generally untestable. 
Unless there is a strong belief in the accuracy of the assumed graphi-
cal structure14, there will always be the threat of unobserved con-
founders biasing causal estimates.

There are numerous other techniques that aim to estimate causal 
effects from observational data, though they often rely on uncon-
foundedness or some variant of unconfoundedness. Matching and 
inverse probability weighting, which are popular in social science  

settings, can be used to control for confounding bias in the causal 
estimates12,15. Double ML methods convert treatment effect esti-
mation into two ML prediction tasks, allowing for causal infer-
ence in high-dimensional data16. There is also a rich field on causal 
discovery17 with recent active ML research in this area18–20, where 
the goal is to infer the causal graph from the data itself, often using 
unconfoundedness as an assumption. Latent variable modeling has 
also been applied to observational causal inference, which does 
not require unconfoundedness but does require specific assump-
tions about the independence and number of causes affecting the 
outcome21. Because unconfoundedness is often difficult to justify 
in real-world problems, we choose to highlight quasi-experimental 
strategies here.

Quasi-experimental strategies
A framework of observational causality that has largely been 
developed in the field of economics, called quasi-experiments, 
leverages randomness occurring naturally in observed data to 
estimate causal effects. After undergoing a ‘credibility revolu-
tion’ over the past few decades22,23, economists have increasingly 
employed quasi-experimental techniques to estimate causal effects 
in real-world problems. These methods also rely on assumptions 
about the causal structure of the data, but these assumptions can be 
more plausible than unconfoundedness, as we will discuss. The fol-
lowing techniques we review leverage naturally occurring random-
ness to estimate causal effects.

Instrumental variables. The first technique we will examine that 
uses this idea is instrumental variable (IV) estimation24. The goal 
is to identify observable variables, instruments, that affect our sys-
tem only through their influence on the treatment of interest X  
(Fig. 2a). In other words, we are not asking for the system to be 
unconfounded but for a component to be unconfounded, which we 
then use to estimate causality.

A famous example of IV analysis in economics considers the 
effect of the amount of required schooling (X) on an individual’s 
future wages (Y), using birth season (Z) as an instrument25. In many 
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Fig. 1 | Graphical representations for estimating causality in experimental and observational data. a, Graphical representation of an experimental study, 
where there is no link between treatment X and confounder Z as X is randomized. b, Graphical representation of an observational study, where both 
colliders C and confounders Z can bias causal effect estimates.
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US states, children are required to enter school the calendar year 
they are age six, so individuals born later in the year are young for 
their school grade. Because state laws require school attendance 
until a particular age, for example, 16 years old, individuals are 
required to be in school for different amounts of time because of 
their birth season. As long as we can assume that birth season is 
effectively random and only affects an individual’s future wages 
through the amount of required schooling they receive, birth season 
can be used as an instrument to estimate causal effects.

To obtain causal estimates using IV analysis, the treatment 
(required schooling), outcome (future wages) and instrument 
(birth season) must be identified, with the assumption that the 
instrument only affects the outcome through its effect on the treat-
ment. We then commonly perform what is known as two-stage least 
squares26 (alternative IV estimation frameworks have also been 
proposed27), regressing the treatment on the instrument in the first 
stage (X̂

I
 = αIV, where α is the fitted coefficient) and then regressing 

the outcome on the estimate of the treatment from the first stage 
(Ŷ
I
 = βX̂

I
, where β is the fitted coefficient). The first stage extracts the 

‘unconfounded component’ of the treatment due to the effect of the 
instrument and uses that component in our second stage regression 
to estimate the causal effect on the outcome, controlling for con-
founding in the process: Fig. 2b depicts simulated data where the 
true treatment effect of X on Y is confounded, and we see that IV 
gives unbiased causal estimates even when confounding is present. 
For our motivating example from the introduction, we could use the 
distance that patients with pneumonia live from a hospital as an IV28 
(as hospital distance is plausibly random).

There are assumptions and considerations to be made when 
performing IV analysis to ensure valid estimation. We need to 
assume that there is no confounding variable influencing both the 
instrument itself and the outcome Y (Fig. 2a), which is similar to 

the unconfoundedness assumption but is often more justifiable 
because the instrument is chosen to be random: it is more plausible 
to argue that birth season is unconfounded with future wages than 
it is to argue that our treatment X schooling is unconfounded with 
future wages. We also need to ensure the instrument affects the sys-
tem only through its effect on the treatment, known as exclusion 
restriction (Fig. 2a): Fig. 2c depicts simulated data where the true 
treatment effect of X on Y is confounded and where the exclusion 
restriction is violated, and we see that neither IV nor regression give 
correct causal estimates. Another key assumption that IV analysis 
requires is the monotonicity or no defiers assumption: no individual 
units in our data sample can respond in the opposite direction of 
treatment uptake when affected by the instrument29. In our above 
example, a violation of monotonicity would be if some states defied 
national trends and held back individuals born late in the year from 
entering school, which would produce the opposite effect of the 
instrument compared with other states. Furthermore, successful 
instruments must correlate strongly with the treatment, as weakly 
correlated instruments lack the precision to produce practically use-
ful estimates. It is important to ensure that these assumptions are 
met, as violations of any of these assumptions could threaten the 
validity of the results.

For example, though weather is a popular instrument considered 
for IV analysis30,31 because changes in weather are plausibly random, 
it may not be appropriate depending on the specific causal question 
being asked. Consider a behavioral scientist who wishes to study 
the effect of exercise on mental well-being and plans to use tem-
perature as an instrument on the amount of exercise individuals get. 
Though it tells an intuitive story where temperature ‘randomizes’ 
the amount of exercise individuals get, temperature may in fact be 
only weakly correlated with exercise (for example, people tend to 
exercise indoors, so the outside temperature does not matter much), 
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Fig. 2 | DaG and plots of iVs. a, Graphical representation of how IVs vary X to measure its causal effect on Y. The crossed edges depict assumptions 
needed for valid IV inference: the exclusion restriction (crossed grey edge) as well as no unmeasured confounding between IV and Y (crossed red edge). 
b, Histogram of causal effect estimates across 100 simulated datasets for both IV (orange) and typical regression (blue) when the true treatment effect 
(dashed line) of X on Y is confounded. c, Histogram of causal effect estimates across 100 simulated datasets for both IV (orange) and typical regression 
(blue) when the true treatment effect (dashed line) of X on Y is confounded and the exclusion restriction is violated.
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or more concerningly, may violate the exclusion restriction (tem-
perature may also influence mental health outside of exercise, such 
as through seasonal affective disorder). In this situation, though it 
seems that weather is a good candidate for IV analysis, a closer con-
sideration of all the assumptions reveal flaws in the study design.

Provided that we find an appropriate instrument such that these 
assumptions are plausible, IV analysis can be used broadly across 
many disciplines to estimate causal effects in non-experimental data 
by leveraging observable sources of randomness (Table 1).

Regression discontinuity designs. Another method of leveraging 
naturally occurring randomness to estimate causality is the regres-
sion discontinuity design (RDD). In RDDs, our treatment of interest  

X is assigned according to a sharp cutoff of a continuous running 
variable R, such as age, a standardized test score or a blood pres-
sure reading. Because the cutoff is sharp (for example, if age 50 or 
above, patients get screened for cancer, otherwise they do not), the 
treatment assignment X is ‘as good as random’ (quasi-random) for 
individuals near the cutoff, allowing for the estimation of the causal 
effect of treatment X on the outcome Y (Fig. 3a).

The classic example of RDD concerns high school academic rec-
ognition (X) and their effect on subsequent academic achievement 
such as receiving scholarships (Y)32. US high school students take a 
standardized exam called the National Merit Scholarship Qualifying 
Test (NMSQT), with students who meet a minimum score cutoff 
being nationally recognized with a Certificate of Merit. Here the 

Table 1 | existing studies and opportunities for quasi-experiments

instrumental variable

Domain area Question Treatment (X) instrument (Z) outcome (Y)

Economics Does required schooling influence future 
wages25?

required schooling Birth season Future job earnings

Medicine Using genome-wide association study 
data, what is the relationship between 
cholesterol and cardiovascular disease60?

High-density lipoprotein (HDL) 
cholesterol levels

Variation in thousands 
of genes that affect HDL 
cholesterol levels

Coronary artery disease 
and heart attack risk

Industry How do product recommendations affect 
what products customers view58?

Product recommendation Shock in popularity 
to product next to 
recommended product

Click-through rate on 
the recommended 
product

Society Does sleep deprivation result in more  
car accidents92?

Sleep amount Daylight savings time Vehicle crash statistics

Neuroscience Are neurons A and B causally connected  
to each other93?

Optogenetic stimulation of  
neuron A

random refractory periods 
of other neurons

Whether neuron B fires

regression discontinuity designs

Domain area Question Treatment (X) running variable (R) and cutoff 
(T)

outcome (Y)

Education How does academic recognition 
affect future academic success32?

Certificate of Merit recognition NMSQT test score and minimum 
score needed for Certificate of 
Merit eligibility

Subsequent scholarship 
awards

Medicine When should HIV patients get 
started on antiretroviral therapy94?

Antiretroviral therapy CD4 T-cell count and threshold 
for treatment administration

Mortality

Industry How much does being on the first 
page of search results influence 
click-through?

Website link on first page of 
search results

Search result ranking and first 
page display limit

Click-through rate on 
links

Society How does air pollution influence 
life expectancy95?

Air pollutants from burning coal Distance from river and free coal 
government policy north of the 
river

Life expectancy

Neuroscience How do neurons learn to optimize 
their activity96?

Neuron spiking Input neural drive and spiking 
threshold

Observed reward for 
neuron

Difference-in-differences

Domain area Question Treatment (X) parallel groups outcome (Y)

Economics Does increasing the minimum 
wage decrease employment43?

Increased minimum wage 
in New Jersey

Fast food workers in New Jersey 
and Pennsylvania

Employment after minimum wage 
increase

Medicine How does limiting hospital work 
hours affect surgical outcomes97?

Limiting resident duty 
hours to 80 hours a week

Teaching and non-teaching 
hospitals, with/without residents

Patient mortality, re-admission 
after duty hours limit

Industry How does social media presence 
influence company profitability98?

Company launch of social 
media site

Participating and 
non-participating customers

Customer site visit frequency  
and profitability after social  
media site launch

Society Does seeing advertisements 
make people unhappy?

Social media site 
incorporating ads into  
their app

Users and non-users of the 
social media platform

Well-being and sentiment 
measures after ads

Ecology How do wildfires affect plant 
species diversity99?

Wildfires burning plots  
of land

Burned and unburned 
geographically similar land plots

Measurements of plant species 
richness
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continuous running variable is the NMSQT test score (R). Students 
who just meet the cutoff are not materially different from students 
who just miss the cutoff, essentially randomizing assignment of the 
Certificate of Merit near the cutoff score. This quasi-randomization 
design allows estimation of the causal relationship between the 
Certificate of Merit and receiving scholarships for students around 
the threshold. For our motivating example in the introduction, an 
RDD using pneumonia risk score cutoffs for hospitalization33 could 
be used to obtain causal estimates.

A common method to obtain causal estimates using RDD is to fit 
two models of the running variable R (test score) on the outcome Y 
(scholarship amount) both to the left and right of the threshold, called 
local linear regression in the linear case (Fig. 3b depicts a local linear 
regression on simulated data)34,35. The causal effect of the treatment 
X (Certificate of Merit) at the threshold is the difference in the two 
fitted regressions’ predicted value at the threshold. A practical con-
sideration of implementing RDDs concerns bandwidth size34: how 
far from the threshold can an individual be and still have effectively 
random treatment? Smaller bandwidths make it more plausible for 
treatment to be quasi-random but also reduce the sample size of 
the regressions fitted. However, larger bandwidths may introduce 
bias into our estimates, particularly if the relationship between the 
running variable R and the outcome Y is nonlinear, as shown in 
the simulated data in Fig. 3c: note how the difference between the 
left and right local regressions at the cutoff value do not match the 
actual discontinuous change in the outcome Y. Fortunately, there 
has been work in econometrics exploring optimal and data-driven 
bandwidth selection methods36,37. Fitting local models on either side 
of the threshold leverages the quasi-randomness in treatment at the 
cutoff, allowing us to quantify the causal effect.

Similar to IV analysis, there are assumptions needed when per-
forming RDD analysis to ensure valid estimation. We assume that 
only the running variable R has a discontinuous jump that drives 

the causal relationship between the treatment and the outcome 
(Fig. 3a). This assumption can be falsified in practice by verifying 
the continuity of other measured covariates at the cutoff value of 
R. Another critical assumption requires that individuals cannot 
perfectly manipulate the running variable, as this could make the 
groups above and below the threshold incomparable. In our above 
example, if some students can precisely control their test score such 
that they do just enough studying to achieve the Certificate of Merit 
cutoff, that would violate the quasi-randomization of treatment. 
Economists have developed tests for this form of running variable 
manipulation enabling falsification of the assumption38. Notably, 
the running variable does not need to be unconfounded to make 
valid causal estimates. Because of its relatively weak and often fal-
sifiable assumptions, RDD is known as one of the most credible 
quasi-experimental methods for estimating causality from observa-
tional data39.

However, although it is tempting to try and apply RDD analysis 
whenever there is a threshold determining treatment assignment, 
there are plausible situations where these assumptions do not hold. 
The assumption that units just above and below the threshold are 
comparable needs to be carefully considered in practice, as viola-
tions often arise when individuals in the study know the cutoff and 
the score. For example, one may study the effect of grant awards 
on future academic success of young scientists, utilizing National 
Institutes of Health payline cutoffs for fellowship and grant fund-
ing for an RDD analysis40,41. However, as payline cutoffs are made 
public, it is likely that scientists who know that they just missed 
the cutoff are further motivated to work harder than scientists that 
just barely made the cutoff, potentially biasing estimates of future 
success because the scientists just above and below the cutoff differ  
in motivation.

Provided that the assumptions can be justified, RDD analysis has 
the potential to be widely applicable in estimating causal effects as 
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thresholds exist in many real-world data settings (Table 1), even in 
unconventional settings such as geographic boundaries42.

Difference-in-differences. A third standard econometric approach 
called difference-in-differences (DiD) addresses confounding in 
observational data by looking at a treated and a control group, and 
comparing their outcome trends over time. We have measurements 
of outcome Y in time periods before (Y1) and after (Y2) treatment 
X for both a treated group that receives the treatment and a con-
trol group that does not receive treatment. The simple difference 
Y2,treat − Y1,treat of the treated group could serve as an estimate of the 
causal effect of X, but it may be confounded by unobserved fac-
tors or time effects. The idea of the DiD is to use the difference 
Y2,control − Y1,control of the control group as an estimate of confounding 
affecting the treated group, correcting for this effect by subtracting 
this second difference (Fig. 4a).

The classic example of DiD in economics concerns the effect of 
raising the minimum wage (X) on employment (Y)9,43. New Jersey 
raised the minimum wage in 1992, while the bordering state of 
Pennsylvania did not. The study compared fast food restaurant 
employment numbers from both states before and after the policy 
change. Changes in employment when looking only at New Jersey 
could have been confounded by other factors, such as a national 
recession. However, by subtracting the difference in employment 
observed in Pennsylvania, which did not see a minimum wage 
increase but is plausibly equally affected by confounders due to geo-
graphic and demographic similarities, the authors could control for 
potential confounding.

To perform DiD analysis, we use longitudinal data to make esti-
mates of Y1 and Y2 (for example, pre- and post-minimum wage 
increase) for both the control and treated groups. The estimates can be 
single expectations computed over the pre and post time periods or,  

if the practitioner wishes to include multiple time points and con-
trol for other covariates, the estimates can be made with a time 
series regression44,45. We then take the difference between the esti-
mated differences of the outcome values between the treated and 
control groups ((Y2,treat − Y1,treat) − (Y2,control − Y1,control)), which yields a 
valid estimate of the effect treatment X has on outcome Y by sub-
tracting out confounding factors that influence both the control and 
treated group equally: Fig. 4b depicts this visually, where the trend 
lines pre-treatment for both the treatment and control group are 
parallel. We note here that DiD analyses are a particular regression 
method for estimating causality from time series, with variations of 
DiD available for non-parametric and nonlinear settings46–48. The 
synthetic control, related to DiD, is another technique developed in 
economics to estimate causal effects from time series data41.

Like the other quasi-experimental designs, DiD analysis requires 
assumptions to ensure valid causal estimates. The most important 
assumption is the presence of parallel trends: we require that the 
treated and control groups are not differently affected by confound-
ing factors over time. In our minimum wage example, the paral-
lel trends assumption would be violated if the Pennsylvania labour 
market reacted differently from the one in New Jersey to the ongo-
ing recession. If the longitudinal data contain multiple time points, 
the parallel trends assumption can be falsified by examining the 
outcome Y in the two groups before the treatment X is applied, 
with Fig. 4c visually depicting such a violation. Another assumption 
required is the absence of spillover effects, where intervention itself 
results in a change in the composition of the control and treated 
groups49. This would be violated if the new minimum wage in New 
Jersey resulted in different individuals re-entering the job market 
or individuals from Pennsylvania moving to New Jersey. Another 
example of DiD assumptions failing to hold was a study examining 
the impact of US food aid delivered to countries on subsequent civil 
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(dashed) to the treated group. c, Scatterplot of outcomes Y for both the treated group (orange) and the control group (blue) over time in simulated data 
where the parallel trends assumption is violated.
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conflict, with random variations in US wheat production impacting 
the amount of aid provided to countries50. The problem was that the 
association between wheat production and conflict varied over time 
across the ‘control’ and ‘treated’ countries, violating parallel trends 
and showing that the effect of food aid on conflict may have been 
driven by spurious correlations51. For DiD analyses to be valid, we 
need evidence to support both parallel trends and the absence of 
spillover effects.

Nevertheless, the transparency and flexibility of the DiD analysis 
make it an attractive technique for causal inference provided that 
appropriate controls are selected and that the DiD assumptions are 
plausible. As many data science problems involve time series, DiD 
has the potential to be used widely for obtaining causal estimates 
from observational data (Table 1).

Limitations of quasi-experiments
There are limitations to the generalizability of causal estimates 
made using quasi-experimental techniques. All of the methods we 
have reviewed estimate causal effects for specific populations. IVs 
estimate the causal effect for the individuals affected by the instru-
ment52. RDD estimates the causal effect of individuals at the thresh-
old53, though extrapolation of causal effects away from the threshold 
is possible under stronger assumptions54. DiD estimates the causal 
effect for the selected treated group. However, we note that gener-
alizability concerns extend to even randomized experiments, where 
participant demographics could limit causal findings to a specific 
population55. When applying quasi-experimental methods, like all 
causal analyses, we must be mindful of which populations the esti-
mates are valid for.

A practical consideration is that quasi-experiments require a spe-
cific data-generating process or specific type of variable observed 
to be applied, such as an instrument strongly correlated with the 
treatment (IV), the presence of a threshold determining treatment 
(RDD) or the existence of an appropriate control group to compare 
to the treated group over time (DiD). Thus, the estimation of causal 
effects using quasi-experimental methods depends on whether the 
data fits into these frameworks, as one cannot usually retrofit exist-
ing data into one of these methods: “[study] design trumps analy-
sis”56. In addition, there is some danger in looking for data that fit 
these designs without properly considering the assumptions under-
lying the techniques, which could invalidate the analysis if not met. 
As discussed in the previous section, data that may seem appropri-
ate at face value for the application of these methods may not work 
when carefully considering the assumptions.

outlook
Data science can benefit from quasi-experiments. Quasi- 
experimental strategies should be more broadly applied in data  
science settings (Table 1) as they are the only way of meaningfully 
estimating causality in many situations. For example, IV analysis has 
been used to estimate causal effects of recommender systems57 by 
leveraging random shocks in product popularity as instruments58. 
A popular technique in epidemiology called Mendelian randomiza-
tion is an application of IVs that uses genetic variation as an instru-
ment59,60. Thresholds in medical practice abound and should be used 
more frequently for RDD analysis61. DiD techniques can be used to 
evaluate the effects of policies and actions over time across domains 
such as advertising62 and public health63. Quasi-experimental strate-
gies could estimate causal effects in these settings, providing useful 
feedback for decision-making.

Furthermore, we can combine these causal estimates from 
quasi-experiments with other data to improve performance on 
tasks across ML. For example, there has been work using overlap-
ping experimental data to control for confounding in observational 
studies64, which could be extended to leverage quasi-experimental  
data. Reinforcement learning agents perform interventions, make 

decisions and form policies when interacting with their environ-
ment, which are inherently causal tasks11,65. However, modern 
reinforcement learning agents are often expensive to train66, so 
incorporating quasi-experimental estimates of causal effects may 
be a promising way to improve efficiency. In particular, RDDs have 
been applied to bandit problems for policy optimization67. There 
has been an exploding interest in explainable artificial intelligence68 
with a renewed focus on causality69,70: how does an ML model’s pre-
diction change when we change an input feature? Though some 
explainable artificial intelligence methods rely on perturbing the 
data to generate explanations71,72, there is value in trying to exploit 
naturally occurring randomness in the data to estimate causal effects 
so that the feature distribution of the original data is preserved, as 
ML models can behave erratically when given out-of-distribution 
examples73. Combining quasi-experiments and their unbiased 
causal estimates with more flexible and powerful ML methods 
promises meaningful blending of the strengths of these approaches.

Quasi-experiments can benefit from ML. Work in economics has 
traditionally focused more on parameter estimation (for example, 
estimating and interpreting regression coefficients) than predic-
tion74, which brings opportunities for ML to be incorporated into 
quasi-experimental methods. In certain contexts, we can replace 
parametric estimators traditionally used in a method with more 
flexible ML estimators. For example, the first stage regression in IV 
analysis is effectively a prediction task. Work has been done scaling 
IVs to high-dimensional data, nonlinear data domains using least 
absolute shrinkage and selection operator (LASSO), kernel meth-
ods and deep learning75–77. There has also been growing interest in 
inferring causality from longitudinal data, with ensemble models as 
well as matrix completion methods being used for causal estimates 
in time series data78,79. Further crosstalk and application of ML tech-
niques to causal time series may be promising future work.

Another area where ML can improve quasi-experiments is by 
refining the target population to which the causal estimates apply. 
The estimates made by quasi-experiments are only valid for specific 
groups, such as individuals who are affected by an instrument or 
threshold in the cases of IV and RDD analysis. Predicting which 
individuals are likely to respond to a treatment or an instrument80–82 
could increase interpretability of the causal estimates, as well as 
inform exclusion criteria for study designs. Furthermore, ML meth-
ods excel at optimizing loss functions, which can be used to refine 
treatment and policy strategies. For example, there has been work 
in optimizing the treatment thresholds of RDDs with respect to 
maximizing treatment effect or minimizing potential harm83,84. ML 
extensions of quasi-experiments show promise in characterizing 
the target population of the causal estimates and informing better 
policy choices.

Empirical economists are showing interest in using ML and data 
science74,85,86. In addition to the settings we have already reviewed, 
there have been methods developed for causal inference in other 
contexts, such as under interference (where the treatment assign-
ment of individuals can affect others’ outcomes)87 or in network 
data88. As ML methods become commonplace, data scientists and 
ML researchers should look to opportunities for collaborations with 
the economics community.

We need to take causality seriously. Much like how causality has 
been highlighted as the central issue in areas such as marketing89 
and neuroscience90, there needs to be wider acknowledgement that 
many data science questions are causal in nature3. We advocate for 
data scientists to view the questions they are working on through 
a causal lens: can the question be answered through correlation or 
prediction, or is there an underlying causal mechanism that one is 
seeking to understand? If the goal is to understand decision-making, 
actions or interventions, a data scientist needs to carefully consider 
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their data: is it observational or experimental, are there concerns 
about unobserved confounding variables and what strategies can 
be taken to address confounding? The quasi-experiments we have 
presented here are one set of methods that can successfully identify 
causal effects in the presence of confounding, and should be part 
of data scientists’ toolkit much like how they have become part of 
economists’ toolkit45,91.

We have highlighted opportunities for both data science 
and the traditional users of quasi-experiments to build off each 
other. Causality needs to play a larger role in data science, and 
quasi-experiments provide practical methods for measuring causal-
ity in observational data. At the same time, innovations from ML 
and data science are being used in economics, and the continued 
application of these ideas to complex data domains can increase 
the scope of questions economists and other social scientists can 
ask. We envision a future where more data science endeavours are 
explicitly centered around causality, and where other fields such as 
economics can leverage advances in ML to help answer their own 
causal questions.

Code availability
We provide interactive widgets of Figs. 2–4 in a Jupyter Notebook 
hosted in a public GitHub repository (https://github.com/tliu526/
causal-data-science-perspective) and served through Binder (see 
link in the GitHub repository).
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